A dynamical approach to the evolution of complex networks

Abstract

In this work we take a dynamical approach to the evolution of complex networks using simulated output of the full system dynamic to direct evolution of the underlying network structure. Extending previous work, we study the problem of enhanced synchronisation and the generality of Type 2 features which have been shown to emerge in regimes where full synchronisation is unstable. Networks are evolved using a new computational tool called NetEvo which aims to minimise a dynamical order parameter performance measure. This process is performed for networks with several alternative node dynamics, showing in all cases that qualitatively similar Type 2 topologies emerge. Analysis of these structures highlights variation in many of the network statistics and motif frequencies, but helps to classify some key characteristics exhibited by all Type 2 networks, regardless of node dynamic

    Similar works