Mechanical properties of high strength eco-concrete containing crushed waste clay brick aggregates as replacement for sand

Abstract

Utilization of clay brick wastes for production of high strength eco-concrete enables the combat of raw resources depletion due to excessive mining as well as mitigating environmental pollution caused by demolition of old brick structures in an effort to achieve environmental sustainability in line with the sustainable development goals (SDGs). This study investigates the beneficial usage of crushed clay brick as partial replacement for natural sand in producing high strength eco-friendly concrete. The replacement percentages of the crushed clay brick in respect to sand are 0, 10, 20, 30, 40 and 50% by weight using a mix proportion ratio of 1:1:2 at a constant water-cement ratio of 0.25, aiming at the 28 days compressive strength of about 40 MPa. The chemical characterization of the crushed clay brick and cement was conducted via X-ray fluorescence (XRF). The mechanical properties tests were performed on about 80 specimens using 100 x 100 x 100 mm for cubes, 100 x 100 x 500 mm for beams and 100 x 200 mm diameter for cylinders after 7, 14 and 28 days of curing in water. Results showed that concrete containing crushed clay brick as partial replacement for sand compare favourably well with the control. Consequently, it is suggested that generated clay brick wastes can be crushed and used as replacement for natural sand for the production of eco-friendly high strength concrete

    Similar works