Procesos iterativos infinitos y objetos trascendentes: un modelo de construcción del infinito matemático desde la teoría APOE

Abstract

En este estudio se analizan las estructuras mentales que un individuo puede desarrollar al construir el concepto de infinito en dos contextos particulares: la paradoja de Aquiles y la tortuga y el triángulo de Sierpinski. Con base en la descomposición genética genérica del infinito, planteada por Roa-Fuentes y Oktaç (2014), se estudian las características particulares de las estructuras y los mecanismos que cada contexto genera. El análisis de los datos a partir del trabajo llevado a cabo por estudiantes de posgrado en Matemáticas y Educación Matemática, muestra cómo se da paso de un proceso iterativo infinito (infinito potencial) a un objeto trascendente (infinito actual). Además se muestra la importancia del mecanismo de coordinación para la construcción de procesos iterativos infinitos

    Similar works