Noninvasive Dynamic Characterization of Swallowing Kinematics and Impairments in High Resolution Cervical Auscultation via Deep Learning


Swallowing is a complex sensorimotor activity by which food and liquids are transferred from the oral cavity to the stomach. Swallowing requires the coordination between multiple subsystems which makes it subject to impairment secondary to a variety of medical or surgically related conditions. Dysphagia refers to any swallowing disorder and is common in patients with head and neck cancer and neurological conditions such as stroke. Dysphagia affects nearly 9 million adults and causes death for more than 60,000 yearly in the US. In this research, we utilize advanced signal processing techniques with sensor technology and deep learning methods to develop a noninvasive and widely available tool for the evaluation and diagnosis of swallowing problems. We investigate the use of modern spectral estimation methods in addition to convolutional recurrent neural networks to demarcate and localize the important swallowing physiological events that contribute to airway protection solely based on signals collected from non-invasive sensors attached to the anterior neck. These events include the full swallowing activity, upper esophageal sphincter opening duration and maximal opening diameter, and aspiration. We believe that combining sensor technology and state of the art deep learning architectures specialized in time series analysis, will help achieve great advances for dysphagia detection and management in terms of non-invasiveness, portability, and availability. Like never before, such advances will enable patients to get continuous feedback about their swallowing out of standard clinical care setting which will extremely facilitate their daily activities and enhance the quality of their lives

    Similar works