Human and murine anti-DNA antibodies induce the production of anti-idiotypic antibodies with autoantigen-binding properties (epibodies) through immune-network interactions.

Abstract

To examine the potential role of immune-network interactions in the production of lupus autoantibodies, normal NZW rabbit antibody responses were analyzed after immunization with one of the following Ig preparations: human lupus serum anti-dsDNA antibodies, human lupus serum anti-ssDNA antibodies, a mixture of human lupus serum anti-dsDNA and anti-ssDNA antibodies, the MRL-lpr/lpr anti-dsDNA mAb H241, and the MRL-lpr/lpr anti-ssDNA mAb H130. Four of five rabbits produced Ig typical of lupus autoantibodies: individual rabbit Ig cross-reacted with multiple autoantigens including nucleic acids, cardiolipin, SmRNP, glomerular extract, laminin, and exogenous Ag. Rabbit anti-Id against human anti-dsDNA antibodies were highly specific for dsDNA. Notably, in each serum the autoantibody activity was confined to the anti-Id Ig fraction. A similar spontaneously occurring Id-anti-Id interaction was also found between anti-ssDNA and anti-dsDNA antibodies isolated from an individual lupus patient. These results indicate that lupus autoantibodies which share Ag binding properties with pathogenic Ig, including both cross-reactive and anti-dsDNA antibodies, can induce the production of Ig with similar autoantigen binding properties through immune-network interactions. This phenomenon, if unregulated, could lead to the amplification of pathogenic autoantibody production in individuals with systemic lupus

    Similar works