CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
DNA damage and repair following In vitro exposure to two different forms of titanium dioxide nanoparticles on trout erythrocyte
Authors
Barucca G
Falcioni ML
Giancarlo FALCIONI
Sekar D
Publication date
1 January 2014
Publisher
'Wiley'
Doi
Cite
Abstract
TiO(2) has been widely used to promote organic compounds degradation on waste aqueous solution, however, data on TiO(2) nanotoxicity to aquatic life are still limited. In this in vitro study, we compare the toxicity of two different families of TiO(2) nanoparticles on erythrocytes from Oncorhynchus mykiss trout. The crystal structure of the two TiO(2) nanoparticles was analyzed by XRD and the results indicated that one sample is composed of TiO(2) in the anatase crystal phase, while the other sample contains a mixture of both the anatase and the rutile forms of TiO(2) in a 2:8 ratio. Further characterization of the two families of TiO(2) nanoparticles was determined by SEM high resolution images and BET technique. The toxicity results indicate that both TiO(2) nanoparticles increase the hemolysis rate in a dose dependent way (1.6, 3.2, 4.8 μg mL(-1) ) but they do not influence superoxide anion production due to NADH addition measured by chemiluminescence. Moreover, TiO(2) nanoparticles (4.8 μg mL(-1) ) induce DNA damage and the entity of the damage is independent from the type of TiO(2) nanoparticles used. Modified comet assay (Endo III and Fpg) shows that TiO(2) oxidizes not only purine but also pyrimidine bases. In our experimental conditions, the exposure to TiO(2) nanoparticles does not affect the DNA repair system functionality. The data obtained contribute to better characterize the aqueous environmental risks linked to TiO(2) nanoparticles exposure. © 2011 Wiley Periodicals, Inc. Environ Toxicol, 2011
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Archivio istituzionale della ricerca - Università di Camerino
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:pubblicazioni.unicam.it:11...
Last time updated on 12/11/2016