A proof of the Markov chain tree theorem

Abstract

Let X be a finite set, P be a stochastic matrix on X, and = limn --> [infinity] (1/n)[summation operator]n-1k=0Pk. Let G = (X, E) be the weighted directed graph on X associated to P, with weights pij. An arborescence is a subset a [subset, double equals] E which has at most one edge out of every node, contains no cycles, and has maximum possible cardinality. The weight of an arborescence is the product of its edge weights. Let denote the set of all arborescences. Let ij denote the set of all arborescences which have j as a root and in which there is a directed path from i to j. Let [short parallel][short parallel], resp. [short parallel]ij[short parallel], be the sum of the weights of the arborescences in , resp. ij. The Markov chain tree theorem states that ij = [short parallel]ij[short parallel]/[short parallel][short parallel]. We give a proof of this theorem which is probabilistic in nature.arborescence Markov chain stationary distribution time reversal tree

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 06/07/2012