Interpreting Semantic Web Data by different human experts can end up in scenarios, where each expert comes up with different and conflicting ideas what a concept can mean and how they relate to other concepts. Software agents that operate on the Semantic Web have to deal with similar scenarios where the interpretation of Semantic Web data that describes the heterogeneous sources becomes contradicting. One such application area of the Semantic Web is ontology mapping where different similarities have to be combined into a more reliable and coherent view, which might easily become unreliable if the conflicting
beliefs in similarities are not managed effectively between the different agents. In this paper we propose a solution for managing this conflict by introducing trust between the mapping agents based on the fuzzy voting model