THE MESOLIMBIC DOPAMINERGIC SYSTEM EXERTS AN INHIBITORY INFLUENCE ON BRAIN CORTICOSTEROID RECEPTOR AFFINITIES

Abstract

Central type I and type II corticosteroid receptors play a principle role in the regulation of corticosterone secretion. Although the binding capacity of these receptors is thought to be regulated essentially hormonally, there is also evidence for a direct neural control. For example, experimental manipulation of central serotoninergic and noradrenergic activities modifies the binding capacity of type I and type II corticosteroid receptors via a corticosterone-independent mechanism. In this study, we tested the effect of lesions of dopaminergic neurons in the ventral tegmental area on corticosteroid receptor binding capacity. The study was performed in adrenalectomized rats whose corticosterone levels were maintained within normal limits by corticosterone pellets and corticosterone in their drinking water during the dark period to generate the circadian rhythm. Binding properties of corticosteroid receptors were analysed in target regions of the lesioned neurons, including the ventral and dorsal striatum. Corticosteroid receptors in the hippocampus were also studied as a control as these lesions do not significantly affect dopamine content in this structure. Three weeks after the lesion, type II corticosteroid receptor affinity was increased in the ventral striatum. There was no effect on receptors in the dorsal striatum or hippocampus. Our results, together with other reports showing that dopamine inhibits the expression of corticosteroid receptors in the anterior pituitary, suggest that dopamine transmission exerts a negative control on central corticosteroid receptors

    Similar works