research
Variable Selection in Additive Models by Nonnegative Garrote
- Publication date
- Publisher
Abstract
We adapt Breiman's (1995) nonnegative garrote method to perform variable selection in nonparametric additive models. The technique avoids methods of testing for which no reliable distributional theory is available. In addition it removes the need for a full search of all possible models, something which is computationally intensive, especially when the number of variables is moderate to high. The method has the advantages of being conceptually simple and computationally fast. It provides accurate predictions and is effective at identifying the variables generating the model. For illustration, we consider both a study of Boston housing prices as well as two simulation settings. In all cases our methods perform as well or better than available alternatives like the Component Selection and Smoothing Operator (COSSO).cross-validation, nonnegative garrote, nonparametric regression, shrinkage methods, variable selection