Multi-Layer Neural Networks for Quality of Service oriented Server-State Classification in Cloud Servers

Abstract

Task allocation systems in the Cloud have been recently proposed so that their performance is optimised in real-time based on reinforcement learning with spiking Random Neural Networks (RNN). In this paper, rather than reinforcement learning, we suggest the use of multi-layer neural network architectures to infer the state of servers in a dynamic networked Cloud environment, and propose to select the most adequate server based on the task that optimises Quality of Service. First, a procedure is presented to construct datasets for state classification by collecting time-varying data from Cloud servers that have different resource configurations, so that the identification of server states is carried out with supervised classification. We test four distinct multi-layer neural network architectures to this effect: multi-layer dense clusters of RNNs (MLRNN), the hierarchical extreme learning machine (H-ELM), the multi-layer perceptron, and convolutional neural networks. Our experimental results indicate that server-state identification can be carried out efficiently and with the best accuracy using the MLRNN and H-ELM

    Similar works