International audienceIn this paper, we propose to represent shapes by graphs. Based on graphic primitives extracted from the binary images, attributed relational graphs were generated. Thus, the nodes of the graph represent shape primitives like vectors and quadrilaterals while arcs describing the mutual primitives relations. To be invariant to transformations such as rotation and scaling, relative geometric features extracted from primitives are associated to nodes and edges as attributes. Concerning graph matching, due to the fact of NP-completeness of graph-subgraph isomorphism, a considerable attention is given to different strategies of inexact graph matching. We also present a new scoring function to compute a similarity score between two graphs, using the numerical values associated to the nodes and edges of the graphs. The adaptation of a greedy graph matching algorithm with the new scoring function demonstrates significant performance improvements over traditional exhaustive searches of graph matching