Dark-state luminescence of macroatoms at the near field

Abstract

We theoretically analyze the optical near-field response of a semiconductor macroatom induced by local monolayer fluctuations in the thickness of a semiconductor quantum well, where the large active volume results in a strong enhancement of the light-matter coupling. We find that in the near-field regime bright and dark excitonic states become mixed, opening new channels for the coupling to the electromagnetic field. As a consequence, ultranarrow luminescence lines appear in the simulated two-photon experiments, corresponding to very long lived excitonic states, which undergo Stark shift and Rabi splitting at relatively small field intensities

    Similar works