CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research article
Predicting the Onset of Quantum Synchronization Using Machine Learning
Authors
F.F. Fanchini
G. Karpat
+3 more
F. Mahlow
I. Yalçlnkaya
B. Çakmak
Publication date
1 January 2024
Publisher
American Physical Society
Doi
Abstract
We have applied a machine learning algorithm to predict the emergence of environment-induced spontaneous synchronization between two qubits in an open system setting. In particular, we have considered three different models, encompassing global and local dissipation regimes, to describe the open system dynamics of the qubits. We have utilized the k-nearest-neighbor algorithm to estimate the long-time synchronization behavior of the qubits only using the early time expectation values of qubit observables in these three distinct models. Our findings clearly demonstrate the possibility of determining the occurrence of different synchronization phenomena with high precision even at the early stages of the dynamics using a machine learning-based approach. Moreover, we show the robustness of our approach against potential measurement errors in experiments by considering random errors in the qubit expectation values, initialization errors, as well as deviations in the environment temperature. We believe that the presented results can prove to be useful in experimental studies on the determination of quantum synchronization. © 2024 American Physical Society.Office of Naval Research, ONR: N62909-24-1-2012; Office of Naval Research, ONR; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 121F246; Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK; Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP: 2023/04987-6; Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES: 88887.607339/2021-00; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES; Grantová Agentura České Republiky, GA ČR: GA CR 23-07169S; Grantová Agentura České Republiky, GA Č
Similar works
Full text
Available Versions
IEU GCRIS Database (İzmir Ekonomi Üniversitesi)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:gcris.ieu.edu.tr:20.500.14...
Last time updated on 05/08/2025