CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
A new xinjiangchelyid turtle from the Middle Jurassic of Xinjiang, China and the evolution of the basipterygoid process in Mesozoic turtles
Authors
Sun Ge
Walter G. Joyce
+3 more
Márton Rabi
Oliver Wings
Chang-Fu Zhou
Publication date
1 January 2013
Publisher
'Springer Science and Business Media LLC'
Doi
View
on
PubMed
Abstract
Background: Most turtles from the Middle and Late Jurassic of Asia are referred to the newly defined clade Xinjiangchelyidae, a group of mostly shell-based, generalized, small to mid-sized aquatic froms that are widely considered to represent the stem lineage of Cryptodira. Xinjiangchelyids provide us with great insights into the plesiomorphic anatomy of crown-cryptodires, the most diverse group of living turtles, and they are particularly relevant for understanding the origin and early divergence of the primary clades of extant turtles. Results: Exceptionally complete new xinjiangchelyid material from the ?Qigu Formation of the Turpan Basin (Xinjiang Autonomous Province, China) provides new insights into the anatomy of this group and is assigned to Xinjiangchelys wusu n. sp. A phylogenetic analysis places Xinjiangchelys wusu n. sp. in a monophyletic polytomy with other xinjiangchelyids, including Xinjiangchelys junggarensis, X. radiplicatoides, X. levensis and X. latiens. However, the analysis supports the unorthodox, though tentative placement of xinjiangchelyids and sinemydids outside of crown-group Testudines. A particularly interesting new observation is that the skull of this xinjiangchelyid retains such primitive features as a reduced interpterygoid vacuity and basipterygoid processes. Conclusions: The homology of basipterygoid processes is confidently demonstrated based on a comprehensive review of the basicranial anatomy of Mesozoic turtles and a new nomenclatural system is introduced for the carotid canal system of turtles. The loss of the basipterygoid process and the bony enclosure of the carotid circulation system occurred a number of times independently during turtle evolution suggesting that the reinforcement of the basicranial region was essential for developing a rigid skull, thus paralleling the evolution of other amniote groups with massive skulls. © 2013 Rabi et al.; licensee BioMed Central Ltd
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
ELTE Digital Institutional Repository (EDIT)
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:edit.elte.hu:10831/91248
Last time updated on 13/09/2023
Repository of the Academy's Library
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:real.mtak.hu:29917
Last time updated on 03/08/2016
Springer - Publisher Connector
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 05/06/2019
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1186%2F1471-2148-1...
Last time updated on 01/04/2019