Spatial and temporal patterns of sea surface chlorophyll concentration and environmental forcing in the southern European Atlantic

Abstract

Phytoplankton biomass dynamic integrates information about the characteristics of the pelagic ecosystem. Temporal and spatial patterns respond to physical processes. Also, phytoplankton abundance and its temporal dynamic largely determine the structure and dynamics of the food web. The southern European Atlantic (48 ºN – 36 ºS) presents differences in continental margin orientation, upwelling intensity, river runoff, a semi-enclosed oceanic domain (Bay of Biscay), and open oceanic waters to the west. Sea surface chlorophyll concentration (SSChl) monthly averages (from satellites) from 1998 to 2012 were analysed at 4x4 km resolution by Empirical Orthogonal Functions. The study area was regionalized according to rotated EOFs and temporal modes were used to resume the SSChl temporal variability in each region. The environmental forcing of temporal modes was analysed against environmental variables by means of Canonical Correspondence Analysis. More than 50% of the variability in oceanic regions was captured by the seasonal signal, with differences in the timing of the spring bloom and with the shape of the seasonal signal related with the latitudinal gradient and the ‘stagnation effect’ of the Bay of Biscay. In French and western Iberian shelves seasonality represented 50%. The difference between shelf and oceanic regions was due to mesoscale processes in shelf areas; i.e. river runoff in the French shelf and coastal upwelling in the western Iberian shelf. Shelf mesoscale processes impose short frequency variability on to the seasonal cycle and increase SSChl levels. The influence that these patterns of spatial and temporal dynamics have on the structure and dynamics of the rest of the food web can be perceived on the spatial patterns of fisheries catches

    Similar works