Understanding operating principles and processivity of molecular motors

Abstract

Motor proteins, sometimes referred to as mechanoenzymes, are a group of proteins that maintain a large part of intracellular motion. Being enzymes, they undergo chemical reactions leading to energy conversion and changes of their conformation. Being mechanodevices, they use the chemical energy to perform mechanical work, leading to the phenomena of motion. Over the past 20 years a series of novel experiments (e.g. single molecule observations) has been performed to gain the deeper knowledge about chemical states of molecular motors as well as their dynamics in the presence or absence of an external force. At the same time, many theoretical models have been proposed, offering various insights into the nano-world dynamics. They can be divided into three main categories: mechanochemical models, ratchet models and molecular dynamics simulations. We demonstrate that by combining those complementary approaches a deeper understanding of the dynamics and chemistry of the motor proteins can be achieved. As a working example, we choose kinesin — a motor protein responsible for directed transport of organelles and vesicles along microtubule tracts

    Similar works