The hypothesis of the study was that linear chained polymers have a natural chance to stabilize as a helix. Ten linear chained polymers, poly(ethylene glycol), polyethyleneimine, poly(lactic acid), poly(N-vinyl-pyrrolidone), poly(trans-1-butenylene), poly(1-chloro-trans-1-butenylene), poly(1-methyl-trans-1-butenylene), poly(1,4,4-trifluoro-trans-1-butenylene), polyacrylonitrile, polychlorotrifluoroethylene, were investigated. The structure of polymers was drawn and then optimized at Hartree-Fock, 6-31G* level of theory. The helix parameter was extracted from the optimized geometries using a home-made program. Seven out of ten polymers are likely to have a helical structure; the polymers with oxygen shown the highest residual error. The helix coefficient and rotation step per monomer were also calculated. The top three polymers according to rotation step per monomer behaved same as the one according to the helix coefficient. The top three non-increasing order was: polychlorotrifluoroethylene-Cl, polyacrylonitrile-N, and poly(lactic acid)-C-methyl. The smallest rotation step per monomer was associated with the smallest value of the helix coefficient (this being linearly related to rotation step per monomer). The highest helix radius was identified for poly(1-chloro-trans-1-butenylene), followed by poly(1-methyl-trans-1-butenylene) and poly(1,4,4-trifluoro-trans-1-butenylene)