CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Bound constrained quadratic programming via piecewise quadratic functions
Authors
K. Madsen
Nielsen H.B.
M.Ç. Pinar
Publication date
1 January 1999
Publisher
'Springer Science and Business Media LLC'
Doi
Abstract
We consider the strictly convex quadratic programming problem with bounded variables. A dual problem is derived using Lagrange duality. The dual problem is the minimization of an unconstrained, piecewise quadratic function. It involves a lower bound of λ1 , the smallest eigenvalue of a symmetric, positive definite matrix, and is solved by Newton iteration with line search. The paper describes the algorithm and its implementation including estimation of λ1, how to get a good starting point for the iteration, and up- and downdating of Cholesky factorization. Results of extensive testing and comparison with other methods for constrained QP are given. © Springer-Verlag 1999
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Bilkent University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.bilkent.edu.tr:...
Last time updated on 12/11/2016