CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Implementation of graphene multilayer electrodes in quantum dot light-emitting devices
Authors
Bacher G.
H. V. Demir
+6 more
D. Jansen
Y. Kelestemur
Mertin W.
E. Nannen
Terlinden H.
S. Wolff
Publication date
1 January 2015
Publisher
'Springer Science and Business Media LLC'
Doi
Cite
Abstract
Graphene is a highly attractive candidate for implementation as electrodes in next-generation large-area optoelectronic devices thanks to its high electrical conductivity and high optical transparency. In this study, we show all-solution-processed quantum dot-based light-emitting devices (QD-LEDs) using graphene mono- and multilayers as transparent electrodes. Here, the effect of the number of graphene layers (up to three) on the QD-LEDs performance was studied. While the implementation of a second graphene layer was found to reduce the turn-on voltage from 2.6 to 1.8 V, a third graphene layer was observed to increase the turn-on voltage again, which is attributed to an increased roughness of the graphene layer stack. © 2015, Springer-Verlag Berlin Heidelberg
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Bilkent University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.bilkent.edu.tr:...
Last time updated on 12/11/2016