CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Highly asymmetric transmission of linearly polarized waves realized with a multilayered structure including chiral metamaterials
Authors
Z. Li
M. Mutlu
E. Ozbay
Publication date
1 January 2014
Publisher
'IOP Publishing'
Doi
Abstract
Cataloged from PDF version of article.We numerically and experimentally demonstrate highly asymmetric transmission of linearly polarized waves with a multilayered metallic structure. The whole structure has a subwavelength thickness and consists of a thin slab of chiral metamaterial sandwiched between two 90° twisted linear polarizers. The chiral metamaterial is made of two sets of twisting cross wires that can rotate the polarization by 90° at resonance, and the two linear polarizers are simple metallic grating polarizers. The operation principle of the whole structure can be well interpreted by using the Jones matrix method. Our experimental results also verify that chiral metamaterials can be safely integrated into complex structures and treated as an effective medium as long as their resonant modes are not affected by the environment. © 2014 IOP Publishing Ltd
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1088%2F0022-3727%2...
Last time updated on 02/01/2020
Bilkent University Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:repository.bilkent.edu.tr:...
Last time updated on 12/11/2016