An optimal fuzzy logic power sharing strategy for Parallel Hybrid Electric Vehicles

Abstract

International audienceVehicle emission reduction has been a research objective for many years, by improving fuel economy and energy efficiency. Therefore, this paper presents a fuzzy logic controller for a Parallel Hybrid Electric Vehicle (PHEV). The PHEV required driving torque is generated by a combined contribution from an Internal Combustion Engine (ICE) and an Induction Motor (IM). The proposed Fuzzy Logic Controller (FLC) is designed based on the desired driving torque and the batteries State of Charge (SoC) with the objective to minimize fuel consumption and emissions, while enhancing or maintaining the PHEV driving performance characteristics. The fuzzy controller output controls the ICE throttle angle degree to achieve operation in a high efficiency region. The induction motor is sized to supply peak power to meet the load power requirement of the PHEV. The proposed PHEV fuzzy controller is implemented and simulated via the advanced vehicle simulator ADVISOR using the European urban (ECE-15) and sub-urban (EUDC) driving cycles. Simulation results reveal that the proposed fuzzy torque distribution strategy is effective over the entire operating range of the vehicle in terms of performance, fuel economy, and emissions

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019