Signed distance functions and viscosity solutions of discontinuous Hamilton-Jacobi Equations

Abstract

In this paper, we first review some properties of the signed distance function. In particular, we examine the skeleton of a curve in ^2 and get a complete description of its closure. We also give a sufficient condition for the closure of the skeleton to be of zero Lebesgue's measure. We then make a complete study of the PDE: du/dt +sign(u_0(x))(|Du|-1)=0 , which is closely related to the signed distance function. The existing literature provides no mathematical results for such PDEs. Indeed, we face the difficulty of considering a discontinuous Hamiltonian operator with respect to the space variable. We state an existence and uniqueness theorem, giving in particular an explicit Hopf-Lax formula for the solution as well as its asymptotic behaviour. This generalizes classical results for continous Hamitonian. We then get interested in a more general class of PDEs: du/dt +sign(u_0(x))H(D- u)=0, with H convex Under some technical but reasonable assumptions, we obtain the same kind of results. As far as we know, they are new for discontinuous Hamiltonians

    Similar works