International audienceWithin the frame of the Pelagic Ecosystem CO2 Enrichment (PeECE III) experiment, reproduction and feeding of the copepod Calanus finmarchicus was monitored in relation to phytoplankton development in two mesocosms, at present 1× (350 ?atm) and ca 3× present (1050 ?atm) CO2 concentrations, respectively. Both mesocosms showed rapid phytoplankton growth after the initial nutrient additions and reached maximum chlorophyll (Chl) a concentrations around day 10. Flow-cytometry and specific pigment analysis (HPLC-CHEMTAX), showed that diatoms and prymnesiophyceae (Emiliania huxleyi (Ehux) and other nanoplankton) dominated the biomass. Feeding and egg production rates of C. finmarchicus developed similarly in both mesocosms, and were positively correlated with Chla, Ehux, diatom and prymnesiophyceae concentrations. Although the total number of copepod nauplii recruited during the experiment was similar in 1× and 3×, significantly less nauplii were recruited in 3× during the peak of the bloom compared to in 1×. We conclude that the algae responsible for the higher biomass in 3× during the peak of the bloom (diatoms and Ehux), may have been relatively inferior food for C. finmarchicus naupliar recruitment, possibly due to a high C:N ratio (>8). Nevertheless, the 3 fold increase in CO2 concentration did not show any clear overall effect on bulk phytoplankton or zooplankton development over the whole experiment, suggesting a more complex coupling between increased CO2 and the nutritional status of the system