research

Model-based analysis of nutrient retention and management for a lowland river

Abstract

International audienceIn the context of the European Water Framework Directive options for improving the water quality of the lowland river Havel (Germany) were assessed. The lower section of this river is actually a polytrophic river-lake system suffering from high external nutrient loading and exhibiting significant in-river turnover. In order to gain a better understanding of present conditions and to allow integrated scenarios of nutrient management to be evaluated the catchment models SWIM and ArcEGMO-Urban were coupled with a simple, newly developed nutrient TRAnsport Model (TraM). Using the TraM model, the retention of nitrogen and phosphorus in a 55 km reach of the Lower Havel River was quantified and its temporal variation was analyzed. It was examined that about 30% of the external nitrogen input to the Lower Havel is retained within the surveyed river section. A comparison of simulation results generated with and without consideration of phosphorus retention/release revealed that summer TP concentrations are currently increased by 100?200% due to internal loading. Net phosphorus release rates of about 20 mg P m?2 d-1 in late summer were estimated for the Havel lakes. Scenario simulations with lowered external nutrient inputs revealed that persistent phosphorus limitation of primary production cannot be established within the next decade. It was shown that a further reduction in nitrogen concentrations requires emissions to be reduced in all inflows. Though the TraM model needs further extension it proved to be appropriate for conducting integrated catchment and river modeling

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016