International audienceThe Mexico City Metropolitan Area (MCMA) study in April 2003 had measurements of most atmospheric constituents including OH and HO2. It provided a unique opportunity to examine atmospheric oxidation in a megacity that has more pollution than typical US and European cities. OH typically reached 0.35 pptv (~7×106 cm?3), comparable to amounts observed in US cities, but HO2 reached 40 pptv in the early afternoon, more than observed in most US cities. A steady-state photochemical model simulated the measured OH and HO2 for day and night to within combined measurement and modeling uncertainties for 2/3 of the results. For OH, measured = 0.65 (modeled) + 0.026 pptv, with R2=0.80. For HO2, observed = 0.70 (modeled) + 3.4 pptv, with R2=0.64. Measurements tended to be higher during night and rush hour; the model was higher by ~30% during midday. With a large median measured OH reactivity of more than 120 s?1 during morning rush hour, median ozone production from observed HO2 reached 50 ppb hr?1; RO2 was calculated to have a similar ozone production rate. For both the HO2/OH ratio and the ozone production, the measured values have the essentially same dependence on NO as the modeled values. This similarity is unlike other urban studies in which the NO-dependence of the measured HO2/OH ratio was much less than the modeled ratio and the ozone production rate that was calculated from measured HO2 unexpectedly appeared to increase as a function of NO with no obvious peak