research

Thermodynamic characterization of Mexico City aerosol during MILAGRO 2006

Abstract

International audienceFast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. Semi-volatile partitioning equilibrates on a timescale between 6 and 20 min. When the aerosol sulfate-to-nitrate molar ratio is less than 1, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations are required to accurately predict the partitioning and phase state of aerosols

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 12/11/2016