research

Contribution of X-ray CMT and image processing to the modelling of pyrocarbon Chemical Vapour Infiltration

Abstract

International audienceThe Chemical Vapour Infiltration (CVI) process is used to fabricate the pyrocarbon matrices of C/C composites. This process involves complex physico-chemical phenomena such as the transport of precursor, carrier, and by-product gases in the reactor and inside a fibrous preform, heat transfer, chemical reactions (pyrolysis and deposition), and the structural evolution of the preform. It is able to provide high-quality materials because the processing conditions are rather mild with respect to the fibres; however it is expensive and sometimes difficult to optimize. This process has been the object of extensive modelling efforts, because of imperative optimization needs. The present work presents an approach suited to the exploitation of computerized microtomographs of C/C composites, which features image acquisition, computation of geometrical and transport properties, and infiltration modelling, as applied to the infiltration of needled carbon fibre fabrics. Another application to the reinforcement of carbon foams is also presented, as an example of inserting this approach in a global modelling strategy

    Similar works