research

Modelling Chemical Vapour Infiltration in C/C composites: numerical tools based on µ-CT images

Abstract

ISBN 978-3-00-032049-1International audienceIn the production of high-quality Ceramic-Matrix Composites, matrix preparation is often made by Chemical Vapor Infiltration (CVI), a process which involves many phenomena such as gas transport, chemical reactions, and structural evolution of the preform. Control and optimization of this high-tech process are demanding for modeling tools.In this context, a numerical simulation of CVI in complex 3D images, acquired e.g. by X-ray Computerized Microtomography, has been developed. The approach addresses the two length scales which are inherent to a composite with woven textile reinforcement (i.e. inter- and intra-bundle), with two numerical tools.The small-scale program allows direct simulation of CVI in small intra-bundle pores. Effective laws for porosity, surface and transport properties as infiltration proceeds are produced by averaging. They are an input for the next modeling step.The second code is a large-scale solver which accounts for the locally heterogeneous and anisotropic character of the pore space. Simulation of the infiltration of a whole composite material part is possible with this program.Validation of these tools on test cases, as well as some examples on actual materials, are shown and discussed

    Similar works