research

A characterization of Walrasian economies of infinity dimension

Abstract

We consider a pure exchange economy, where agent's consumption spaces are Banach spaces, goods are contingent in time of states of the world, the utility function of each agent is not necessarily a separable function, but increasing, quasiconcave, and twice Frechet differentiable over the consumption space. We characterize the set of walrasian equilibria, by the social weight that support each walrasian equilibria. Using technical of the functional analysis, we characterize this set as a Banach manifold and in the next sections we focuses on singularities.

    Similar works