research

Equivalence of the Higher-order Asymptotic Efficiency of k-step and Extremum Statistics

Abstract

It is well known that a one-step scoring estimator that starts from any N^{1/2}-consistent estimator has the same first-order asymptotic efficiency as the maximum likelihood estimator. This paper extends this result to k-step estimators and test statistics for k >= 1, higher-order asymptotic efficiency, and general extremum estimators and test statistics. The paper shows that a k-step estimator has the same higher-order asymptotic efficiency, to any given order, as the extremum estimator towards which it is stepping, provided (i) k is sufficiently large, (ii) some smoothness and moment conditions hold, and (iii) a condition on the initial estimator holds. For example, for the Newton-Raphson k-step estimator, we obtain asymptotic equivalence to integer order s provided 2^{k} >= s + 1. Thus, for k = 1, 2, and 3, one obtains asymptotic equivalence to first, third, and seventh orders respectively. This means that the maximum differences between the probabilities that the (N^{1/2}-normalized) k-step and extremum estimators lie in any convex set are o(1), o(N^{-3/2}), and o(N^{-3}) respectively.Asymptotics, Edgeworth expansion, extremum estimator, Gauss-Newton, higher-order efficiency, Newton-Raphson.Inventory theory, optimal ordering policies, (S,s) policies, K-concavity

    Similar works