Aim: Interferon alpha (IFN-α) controlled release of nanoparticles was investigated under in vitro conditions. Materials & methods: IFN-α and pegylated IFN-α (PEG-IFN-α) were encapsulated by poly(lactic-co-glycolic acid) (PLGA) and pegylated PLGA (PEG-PLGA) copolymers using double emulsion solvent evaporation method. Results: The size of resulting four nanoparticles (IFN-α in poly(lactic-co-glycolic acids), IFN-α in poly(lactic-co-glycolic acid)-polyethylene glycol, PEG-IFN-α in poly(lactic-co-glycolic acids) and PEG-IFN-α in poly(lactic-co-glycolic acid)-polyethylene glycol) was below 130 nm diameter. IFN-α encapsulation efficiency of the nanoparticles was between 78 and 91%. Conclusion: The in vitro drug release studies conducted in phosphate-buffered saline and human plasma highlighted the role of incubation medium on the IFN release from the nanoparticles. The PEG-IFN-α in poly(lactic-co-glycolic acid)-polyethylene glycol was the most promising nanoparticle among the four formulations because of its remarkably constant release in both phosphate-buffered saline and plasma. </jats:p