research

Scheduling Parallel Jobs with Linear Speedup

Abstract

We consider a scheduling problem where a set of jobs is distributed over parallel machines. The processing time of any job is dependent on the usage of a scarce renewable resource, e.g., personnel. An amount of k units of that resource can be allocated to the jobs at any time, and the more of that resource is allocated to a job, the smaller its processing time. The dependence of processing times on the amount of resources is linear for any job. The objective is to find a resource allocation and a schedule that minimizes the makespan. Utilizing an integer quadratic programming relaxation, we show how to obtain a (3+e)-approximation algorithm for that problem, for any e>0. This generalizes and improves previous results, respectively. Our approach relies on a fully polynomial time approximation scheme to solve the quadratic programming relaxation. This result is interesting in itself, because the underlying quadratic program is NP-hard to solve in general. We also briefly discuss variants of the problem and derive lower bounds.operations research and management science;

    Similar works