Trajectory control of a quadrotor using a control allocation approach

Abstract

A quadrotor is an underactuated unmanned aerial vehicle with four inputs to control the dynamics. Trajectory control of a quadrotor is a challenging task and usually tackled in a hierarchical framework where desired/reference attitude angles are analytically determined from the desired command signals, i.e. virtual controls, that control the positional dynamics of the quadrotor and the desired yaw angle is set to some constant value. Although this method is relatively straightforward, it may produce large and nonsmooth reference angles which must be saturated and low-pass filtered. In this work, we show that the determination of desired attitude angles from virtual controls can be viewed as a control allocation problem and it can be solved numerically using nonlinear optimization where certain magnitude and rate constraints can be imposed on the desired attitude angles and the yaw angle need not be constant. Simulation results for both analytical and numerical methods have been presented and compared. Results for constrained optimization show that the flight performance is quite satisfactory

    Similar works