Parallel architectures following the SIMT model such as GPUs benefit from application regularity by issuing concurrent threads running in lockstep on SIMD units. As threads take different paths across the control-flow graph, lockstep execution is partially lost, and must be regained whenever possible in order to maximize the occupancy of SIMD units. In this paper, we propose two techniques to handle SIMT control divergence and identify reconvergence points. The most advanced one operates in constant space and handles indirect jumps and recursion. We evaluate a hardware implementation which leverage the existing memory divergence management unit. In terms of performance, this solution is at least as efficient as state of the art techniques in use in current GPUs.Les architectures parallèles qui obéissent au modèle SIMT telles que les GPU tirent parti de la régularité des applications en exécutant plusieurs threads concurrents sur des unités SIMD de manière synchrone. Lorsque les threads empruntent des chemins divergents dans le graphe de flot de contrôle, leur exécution est séquentialisée jusqu'au prochain point de convergence. La reconvergence doit être effectuée au plus tôt de manière à maximiser l'occupation des unités SIMD. Nous proposons dans cet article deux techniques permettant de traiter la divergence de contrôle en SIMT et d'identifier dynamiquement les points de reconvergence, dont une qui opère en espace constant et gère les sauts indirects et la récursivité. Nous évaluons une réalisation matérielle consistant à partager le matériel existant de l'unité de gestion de la divergence mémoire. En termes de performances, cette solution est au moins aussi efficace que les techniques de l'état de l'art employés par les GPU actuels