Feedback Enhances Simultaneous Energy and Information Transmission in Multiple Access Channels

Abstract

International audienceIn this paper, the fundamental limits of simultaneous information and energy transmission in the two-user Gaussian multiple access channel with feedback are fully characterized. All the achievable information and energy transmission rates (in bits per channel use and energy-units per channel use, respectively) are identified. More specifically, the information-energy capacity region is fully characterized. A simple achievability scheme based on power-splitting and Ozarow's scheme is shown to be optimal. Finally, the maximum individual information rates and the information sum-capacity that are achievable given a minimum energy rate constraint of b energy-units per channel use at the input of the energy harvester are identified. An interesting conclusion is that for a fixed information transmission rate, feedback can at most double the energy transmission rate with respect to the case without feedback

    Similar works