research
Smoothed L-estimation of Regression Function
- Publication date
- Publisher
Abstract
The Nadaraya-Watson nonparametric estimator of regression is known to be highly sensitive to the presence of outliers in data.This sensitivity can be reduced, for example, by using local L-estimates of regression.Whereas the local L-estimation is traditionally done using an empirical conditional distribution function, we propose to use instead a smoothed conditional distribution function.The asymptotic distribution of the proposed estimator is derived under mild ¯-mixing conditions, and additionally, we show that the smoothed L-estimation approach provides computational as well as statistical ¯nite-sample improvements.Finally, the proposed method is applied to the modelling of implied volatilitynonparametric regression;L-estimation;smoothed cumulative distribution function