research
Nonlinear causality testing with stepwise multivariate filtering
- Publication date
- Publisher
Abstract
This study explores the direction and nature of causal linkages among six currencies denoted relative to United States dollar (USD), namely Euro (EUR), Great Britain Pound (GBP), Japanese Yen (JPY), Swiss Frank (CHF), Australian Dollar (AUD) and Canadian Dollar (CAD). These are the most liquid and widely traded currency pairs in the world and make up about 90% of total Forex trading worldwide. The data covers the period 3/20/1987-11/14/2007, including the Asian crisis, the dot-com bubble and the period just before the outbreak of the US subprime crisis. The objective of the paper is to test for the existence of both linear and nonlinear causal relationships among these currency markets. The modified Baek-Brock test for nonlinear non-causality is applied on the currency return time series as well as the linear Granger test. Further to the classical pairwise analysis causality testing is conducted in a multivariate formulation, to correct for the effects of the other variables. A new stepwise multivariate filtering approach is implemented. To check if any of the observed causality is strictly nonlinear, the nonlinear causal relationships of VAR/VECM filtered residuals are also examined. Finally, the hypothesis of nonlinear non-causality is investigated after controlling for conditional heteroskedasticity in the data using GARCH-BEKK, CCC-GARCH and DCC-GARCH models. Significant nonlinear causal linkages persisted even after multivariate GARCH filtering. This indicates that if nonlinear effects are accounted for, neither FX market leads or lags the other consistently and currency returns may exhibit statistically significant higher-order moments and asymmetries.nonparametric Granger causality; filtering; multivariate GARCH models; spillovers