thesis

Delay driven multi-way circuit partitioning.

Abstract

Wong Sze Hon.Thesis (M.Phil.)--Chinese University of Hong Kong, 2003.Includes bibliographical references (leaves 88-91).Abstracts in English and Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Preliminaries --- p.1Chapter 1.2 --- Motivations --- p.1Chapter 1.3 --- Contributions --- p.3Chapter 1.4 --- Organization of the Thesis --- p.4Chapter 2 --- VLSI Physical Design Automation --- p.5Chapter 2.1 --- Preliminaries --- p.5Chapter 2.2 --- VLSI Design Cycle [1] --- p.6Chapter 2.2.1 --- System Specification --- p.6Chapter 2.2.2 --- Architectural Design --- p.6Chapter 2.2.3 --- Functional Design --- p.6Chapter 2.2.4 --- Logic Design --- p.8Chapter 2.2.5 --- Circuit Design --- p.8Chapter 2.2.6 --- Physical Design --- p.8Chapter 2.2.7 --- Fabrication --- p.8Chapter 2.2.8 --- Packaging and Testing --- p.9Chapter 2.3 --- Physical Design Cycle [1] --- p.9Chapter 2.3.1 --- Partitioning --- p.9Chapter 2.3.2 --- Floorplanning and Placement --- p.11Chapter 2.3.3 --- Routing --- p.11Chapter 2.3.4 --- Compaction --- p.12Chapter 2.3.5 --- Extraction and Verification --- p.12Chapter 2.4 --- Chapter Summary --- p.12Chapter 3 --- Recent Approaches on Circuit Partitioning --- p.14Chapter 3.1 --- Preliminaries --- p.14Chapter 3.2 --- Circuit Representation --- p.15Chapter 3.3 --- Delay Modelling --- p.16Chapter 3.4 --- Partitioning Objectives --- p.19Chapter 3.4.1 --- Interconnections between Partitions --- p.19Chapter 3.4.2 --- Delay Minimization --- p.19Chapter 3.4.3 --- Area and Number of Partitions --- p.20Chapter 3.5 --- Partitioning Algorithms --- p.20Chapter 3.5.1 --- Cut-size Driven Partitioning Algorithm --- p.21Chapter 3.5.2 --- Delay Driven Partitioning Algorithm --- p.32Chapter 3.5.3 --- Acyclic Circuit Partitioning Algorithm --- p.33Chapter 4 --- Clustering Based Acyclic Multi-way Partitioning --- p.38Chapter 4.1 --- Preliminaries --- p.38Chapter 4.2 --- Previous Works on Clustering Based Partitioning --- p.39Chapter 4.2.1 --- Multilevel Circuit Partitioning [2] --- p.40Chapter 4.2.2 --- Cluster-Oriented Iterative-Improvement Partitioner [3] --- p.42Chapter 4.2.3 --- Section Summary --- p.44Chapter 4.3 --- Problem Formulation --- p.45Chapter 4.4 --- Clustering Based Acyclic Multi-Way Partitioning --- p.46Chapter 4.5 --- Modified Fan-out Free Cone Decomposition --- p.47Chapter 4.6 --- Clustering Phase --- p.48Chapter 4.7 --- Partitioning Phase --- p.51Chapter 4.8 --- The Acyclic Constraint --- p.52Chapter 4.9 --- Experimental Results --- p.57Chapter 4.10 --- Chapter Summary --- p.58Chapter 5 --- Network Flow Based Multi-way Partitioning --- p.61Chapter 5.1 --- Preliminaries --- p.61Chapter 5.2 --- Notations and Definitions --- p.62Chapter 5.3 --- Net Modelling --- p.63Chapter 5.4 --- Previous Works on Network Flow Based Partitioning --- p.64Chapter 5.4.1 --- Network Flow Based Min-Cut Balanced Partitioning [4] --- p.65Chapter 5.4.2 --- Network Flow Based Circuit Partitioning for Time-multiplexed FPGAs [5] --- p.66Chapter 5.5 --- Proposed Net Modelling --- p.70Chapter 5.6 --- Partitioning Properties Based on the Proposed Net Modelling --- p.73Chapter 5.7 --- Partitioning Step --- p.75Chapter 5.8 --- Constrained FM Post Processing Step --- p.79Chapter 5.9 --- Experiment Results --- p.81Chapter 6 --- Conclusion --- p.86Bibliography --- p.8

    Similar works