research
Why inferential statistics are inappropriate for development studies and how the same data can be better used
- Publication date
- Publisher
Abstract
The purpose of this paper is twofold: 1) to highlight the widely ignored but fundamental problem of ‘superpopulations’ for the use of inferential statistics in development studies. We do not to dwell on this problem however as it has been sufficiently discussed in older papers by statisticians that social scientists have nevertheless long chosen to ignore; the interested reader can turn to those for greater detail. 2) to show that descriptive statistics both avoid the problem of superpopulations and can be a powerful tool when used correctly. A few examples are provided. The paper ends with considerations of some reasons we think are behind the adherence to methods that are known to be inapplicable to many of the types of questions asked in development studies yet still widely practiced.frequentist statistics; Bayesian statistics; causation; determinism; explanation; spatial autocorrelation; mulitple regression; international development; econometrics; comparative method; datasets; descriptive statistics; tabular analysis; visual analysis; maps; regession modeling; quantitative; qualitative; macrosociology; superpopulations; apparent populations; indeterminism; statistical assumptions