thesis

Dynamic modeling and simulation of a multi-fingered robot hand.

Abstract

by Joseph Chun-kong Chan.Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.Includes bibliographical references (leaves 117-124).Abstract also in Chinese.Abstract --- p.iAcknowledgments --- p.ivList of Figures --- p.xiList of Tables --- p.xiiList of Algorithms --- p.xiiiChapter 1 --- Introduction --- p.1Chapter 1.1 --- Motivation --- p.1Chapter 1.2 --- Related Work --- p.5Chapter 1.3 --- Contributions --- p.7Chapter 1.4 --- Organization of the Thesis --- p.9Chapter 2 --- Contact Modeling: Kinematics --- p.11Chapter 2.1 --- Introduction --- p.11Chapter 2.2 --- Contact Kinematics between Two Rigid Bodies --- p.14Chapter 2.2.1 --- Contact Modes --- p.14Chapter 2.2.2 --- Montana's Contact Equations --- p.15Chapter 2.3 --- Finger Kinematics --- p.18Chapter 2.3.1 --- Finger Forward Kinematics --- p.19Chapter 2.3.2 --- Finger Jacobian --- p.21Chapter 2.4 --- Grasp Kinematics between a Finger and an Object --- p.21Chapter 2.4.1 --- Velocity Transformation between Different Coordinate Frames --- p.22Chapter 2.4.2 --- Grasp Kinematics for the zth Contact --- p.23Chapter 2.4.3 --- Different Fingertip Models and Different Contact Modes --- p.25Chapter 2.5 --- Velocity Constraints of the Entire System --- p.28Chapter 2.6 --- Summary --- p.29Chapter 3 --- Contact Modeling: Dynamics --- p.31Chapter 3.1 --- Introduction --- p.31Chapter 3.2 --- Multi-fingered Robot Hand Dynamics --- p.33Chapter 3.3 --- Object Dynamics --- p.35Chapter 3.4 --- Constrained System Dynamics --- p.37Chapter 3.5 --- Summary --- p.39Chapter 4 --- Collision Modeling --- p.40Chapter 4.1 --- Introduction --- p.40Chapter 4.2 --- Assumptions of Collision --- p.42Chapter 4.3 --- Collision Point Velocities --- p.43Chapter 4.3.1 --- Collision Point Velocity of the ith. Finger --- p.43Chapter 4.3.2 --- Collision Point Velocity of the Object --- p.46Chapter 4.3.3 --- Relative Collision Point Velocity --- p.47Chapter 4.4 --- Equations of Collision --- p.47Chapter 4.4.1 --- Sliding Mode Collision --- p.48Chapter 4.4.2 --- Sticking Mode Collision --- p.49Chapter 4.5 --- Summary --- p.51Chapter 5 --- Dynamic Simulation --- p.53Chapter 5.1 --- Introduction --- p.53Chapter 5.2 --- Architecture of the Dynamic Simulation System --- p.54Chapter 5.2.1 --- Input Devices --- p.54Chapter 5.2.2 --- Dynamic Simulator --- p.58Chapter 5.2.3 --- Virtual Environment --- p.60Chapter 5.3 --- Methodologies and Program Flow of the Dynamic Simulator --- p.60Chapter 5.3.1 --- Interference Detection --- p.61Chapter 5.3.2 --- Constraint-based Simulation --- p.63Chapter 5.3.3 --- Impulse-based Simulation --- p.66Chapter 5.4 --- Summary --- p.69Chapter 6 --- Simulation Results --- p.71Chapter 6.1 --- Introduction --- p.71Chapter 6.2 --- Change of Grasping Configurations --- p.71Chapter 6.3 --- Rolling Contact --- p.76Chapter 6.4 --- Sliding Contact --- p.76Chapter 6.5 --- Collisions --- p.85Chapter 6.6 --- Dextrous Manipulation Motions --- p.93Chapter 6.7 --- Summary --- p.94Chapter 7 --- Conclusions --- p.99Chapter 7.1 --- Summary of Contributions --- p.99Chapter 7.2 --- Future Work --- p.100Chapter 7.2.1 --- Improvement of Current System --- p.100Chapter 7.2.2 --- Applications --- p.101Chapter A --- Montana's Contact Equations for Finger-object Contact --- p.103Chapter A.1 --- Local Coordinates Charts --- p.103Chapter A.2 --- "Curvature, Torsion and Metric Tensors" --- p.104Chapter A.3 --- Montana's Contact Equations --- p.106Chapter B --- Finger Dynamics --- p.108Chapter B.1 --- Forward Kinematics of a Robot Finger --- p.108Chapter B.1.1 --- Link-coordinate Transformation --- p.109Chapter B.1.2 --- Forward Kinematics --- p.109Chapter B.2 --- Dynamic Equation of a Robot Finger --- p.110Chapter B.2.1 --- Kinetic and Potential Energy --- p.110Chapter B.2.2 --- Lagrange's Equation --- p.111Chapter C --- Simulation Configurations --- p.113Chapter C.1 --- Geometric models --- p.113Chapter C.2 --- Physical Parameters --- p.113Chapter C.3 --- Simulation Parameters --- p.116Bibliography --- p.12

    Similar works