research

Electron transfer properties of mono- and diferrocenyl based Cu complexes attached as self-assembled monolayers on gold electrodes by "self-induced" electroclick

Abstract

International audienceTwo new Cu complexes bearing a 6-ethynyl bis-(methyl-pyridyl) amine (6eBMPA) moiety, as an electroclickable function linked to a ferrocenyl-based triazolyl arm (ligands 3 and 4) have been synthetized and characterized by UV-Visible, EPR spectroscopies and cyclic voltammetry in acetonitrile. Two different spacer groups between the terminal ferrocene and the triazolyl group were inserted: an hexyl chain in the case of the complex Cu-3, an ethenyl-bridged diferrocenyl system for the complex Cu-4. The monoelectronic oxidation of the diferrocenyl species yields a stable mixed-valence complex. NIR-Visible spectroscopic studies show a moderate interaction between ferrocenyl units (class II according to the Robin-Day classification). The immobilization of these systems as SAMs on an azidoundecanethiol modified gold electrode has been successfully operated by using the "self-induced electroclick" procedure. The voltammetric characterization of the surface-tagged Cu complexes indicates that good surface coverage was achieved, with moderately fast electron-transfer reaction between the electrode and the redox active immobilized systems (k0(Cu) = 2-4 s−1, k0(Fc) = 20-90 s−1). Remarkably, the rate of charge transport is significantly controlled by the nature of the spacer on the ferrocenyl triazole arm

    Similar works

    Full text

    thumbnail-image