research

Dynamic general equilibrium analysis of improved weed management in Australia's winter cropping systems

Abstract

A recent analysis indicated that the direct financial cost of weeds to Australia’s winter grain sectorwas approximately A1.2bnin19981999.Costsofthismagnituderepresentalargerecurringproductivitylossinanagriculturalsectorthatissufficienttoimpactsignificantlyonregionaleconomies.Usingamultiregionaldynamiccomputablegeneralequilibriummodel,wesimulatethegeneralequilibriumeffectsofahypotheticalsuccessfulcampaigntoreducetheeconomiccostsofweeds.WeassumethatanadditionalA1.2bn in 1998–1999. Costs of thismagnitude represent a large recurring productivity loss in an agricultural sector that is sufficient to impact significantly on regional economies.Using amulti-regional dynamic computable general equilibrium model, we simulate the general equilibrium effects of a hypothetical successful campaign to reduce the economic costs of weeds. We assume that an additional 50m of R&D spread over five years is targeted at reducing the additional costs and reduced yields arising from weeds in various broadacre crops. Following this R&D effort, one-tenth of the losses arising from weeds is temporarily eliminated, with a diminishing benefit in succeeding years. At the national level, there is a welfare increase of $700m in discounted net present value terms. The regions with relatively high concentrations of winter crops experience small temporary macroeconomic gains.CGE modelling, dynamics, weed management, Crop Production/Industries,

    Similar works