research

MANAGING PHOSPHOROUS SOIL DYNAMICS OVER SPACE AND TIME

Abstract

Understanding the relationship between soil fertility dynamics and crop response is conceptually appealing. Even more appealing is comprehension of the spatial and temporal heterogeneity of these connections over a production surface and across seasons. Knowledge of these interactions is complicated because nutrient carryover dynamics and crop response to inputs are determined simultaneously on the one-hand, and sequentially on the other. A second problem enters when crops are rotated, for example, in the corn-soybean system commonly practiced in the Corn Belt. This paper examines the nutrient carryover-crop response nexus using data from a corn-soybean, variable-rate nitrogen (N) and phosphorous (P) experiment conducted over five years. Site-specific corn response to N and P and soybean response to P are simultaneously estimated with a P carryover equation. These estimates are used in a dynamic programming model to map site-specific optimal N and P fertilizer policies, soil P evolution, and profitability. The net present value of managing N and P site-specifically is compared to a strategy where these inputs are managed uniformly following extension guidelines. The results suggest that when P-carryover is managed, site-specific returns to the variable-rate strategies are higher than returns to a conventional, uniform strategy.Crop Production/Industries,

    Similar works