unknown

Nouvelle alimentation pour les fours à arc à courant alternatif

Abstract

Destinés au recyclage des ferrailles, les fours à arc à courant alternatif sont des grands pollueurs du réseau électrique. Ils génèrent notamment des harmoniques de courant en basse fréquence et provoquent du flicker. Compte tenu des puissances mises en jeu (jusqu’à 100 MW pour les plus gros fours), la mise en place d’un dispositif de compensation des perturbations est obligatoire. Celui-ci est généralement basé sur un compensateur statique de puissance réactive associé à des éléments de filtrage passif. Cet équipement, qui est coûteux, lourd et volumineux, n’apporte dans la plupart des cas que peu d’amélioration dans le transfert d’énergie entre le réseau et le four. Le travail présenté dans cette thèse concerne une nouvelle alimentation électronique de puissance pour les fours à arc à courant alternatif. L’idée n’est plus de dépolluer le réseau mais de proposer une alimentation naturellement peu polluante qui garantit un transfert d’énergie optimal entre le réseau et le four. La topologie proposée est modulaire, elle repose sur une association série et parallèle de gradateurs à découpage et peut s’adapter à des niveaux de tension et de puissance différents en fonction des caractéristiques du four. La commande est basée sur une régulation cascade, elle permet un fonctionnement du four à puissance active constante et limite la consommation de puissance réactive, ce qui réduit de manière importante le dimensionnement de la compensation statique. Afin de définir un cahier des charges et d’établir un modèle électrique d’un four et de son alimentation, une campagne de mesures a été effectuée sur un site industriel équipé de deux fours de 75 MVA. Une étude par simulation permet ensuite de démontrer que grâce à sa commande, la nouvelle alimentation augmente l’énergie électrique transmise à la ferraille et réduit le flicker. Finalement, il est mis en évidence que le dimensionnement de l’électronique utilisée dans cette nouvelle alimentation est nettement inférieur à celui d’un compensateur de puissance réactive classiquement associé à un four à courant alternatif. Dans le but de valider expérimentalement cette nouvelle alimentation, un dimensionnement de la topologie à gradateur MLI est proposé dans le cas d’un four d’essais de 3 MW. Une maquette de faible puissance (qq kW) réalisé en laboratoire permet de valider le fonctionnement du convertisseur et de sa commande. ABSTRACT: Electrical arcs Furnaces (EAFs), supplied with alternating current (AC EAF) or direct current (DC EAF), provide a relatively simple means of melting scrap and are widely used in steel industry. The first EAFs were supplied with AC current. The DC EAFs appeared at the beginning of 1980s in order to reduce electrical disturbances on the power network such as flicker effect. Today 90% of the electrical steel in the world is produced by the AC EAFs. Nowadays, arc furnaces are designed for very large power input rating (up to 100 MVA), and due to the nature of both, the electrical arc and the meltdown process, various electrical characteristics such as the arc voltage and current, the active and reactive power exhibit large variations especially at the beginning of the scrap melting. These variations cause many power quality problems on the high voltage network such as flicker effect, unbalance and harmonics current, and affect the power system performances. To reduce these disturbances several solutions are available and differ in performance, flexibility and cost. For flicker mitigation, the Static Var Compensation (SVC) or the Static Synchronous Compensator (STATCOM), connected at the PCC in parallel with the load, are the most used structures. However, the compensating current injected by the SVC or the STATCOM has no effect on the arc current. During the meltdown, the mechanical control (electrode position) of the electrical power, which has very low bandwidth, affects the furnace performances by limiting the energy transferred to the furnace. This thesis presents a new electrical power supply for AC arc furnaces. This power supply uses AC chopper to control the arc current. A constant power control on the AC chopper is used. Compared to a classical supply, without electronic control, the active constant power operations leads to a higher average power level to the furnace reducing the melting time and increasing the furnace productivity. Furthermore, the reactive constant power operation limits the arc current especially during short circuit, decreasing the flicker effect. Owing to lower active and reactive power fluctuations the compensator has the smallest power rating. Simulation results, which take into account measurements carried out on a 75 MVA arc furnace, show that the furnace productivity could be increased by 11% and also that a flicker reduction of 55% could be expected from this new power supply. Finally design criteria of the proposed supply are presented for a 3 MVA arc furnace. The operation of PWM AC chopper is validated in laboratory (LEEI) by experimental test on a 3kVA prototype

    Similar works