research

THash: A Practical Network Optimization Scheme for DHT-based P2P Applications

Abstract

International audienceP2P platforms have been criticized because of the heavy strain that they can inflict on costly inter-domain links of network operators. It is therefore mandatory to develop network optimization schemes for controlling the load generated by a P2P platform on an operator network. While many research efforts exist on centralized tracker-based systems, in recent years multiple DHT-based P2P platforms have been widely deployed and considered as commercial services due to their scalability and fault tolerance. Finding network optimization for DHT-based P2P applications has thereby potential large practical impacts. In this paper, we present THash, a simple scheme that implements a distributed and effective network optimization for DHT systems. THash uses standard DHT put/get semantics and utilizes a triple hash method to guide the DHT clients to choose their sharing peers in proper domains. We have implemented THash in a major commercial P2P system (PPLive), using the standard ALTO/P4P protocol as the network information source. We conducted experiments over this network in real operation and observed that compared with Native DHT, THash reduced respectively by 47.4% and 67.7% the inter-PID and inter-AS traffic, while reducing the average downloading time by 14.6% to 24.5%

    Similar works