The exponential growth in publications and applications of perovskite photovoltaic cells highlights their significance in energy conversion and carbon emissions mitigation. From 2009 to 2023, the efficiency of these cells has significantly increased from 3.9% to 25.7%. The adaptive capacity of perovskite structures for solar spectrum absorption and current displacement is strongly influenced by the bandgap energy, ideally situated between 1.3 and 1.7 eV. Although various perovskite compositions can potentially attain this energy range, the synthesis methodologies remain empirically driven, presenting challenges to experimental viability. In this context, leveraging experimental databases provided by global researchers emerges as an effective approach to expedite and enable research on perovskite structures for photovoltaic cells. This study utilized the comprehensive MaterialsZone database to feed machine learning algorithms, focusing on Support Vector Machine (SVM) and Random Forest (RF) methodologies to predict the bandgap energy in a targeted perovskite composition. By conducting synthesis experiments towards specific compositions guided by model predictions, it becomes feasible to efficiently achieve the desired bandgap energy. Such a strategy not only accelerates research progress but also serves to curtail costs associated with the synthesis of perovskite materials. The RF model exhibited an average percentage error of 5.13%, a standard deviation of the percentage error of 6.99%, and a Root Mean Square Error (RMSE) of 0.119. In contrast, the SVM model recorded an average percentage error of 4.05%, a standard deviation of the percentage error of 6.45%, and RMSE of 0.881. These developed models not only demonstrate high predictive capacity but also contribute substantively to the comprehension of the intricate relationship between the chemical composition and bandgap energy values of perovskites. By deploying machine learning algorithms, this work paves the way for targeted optimizations and considerable strides in the manufacturing of perovskite-based photovoltaic cells.O crescimento exponencial nas publicações e aplicações das células fotovoltaicas de perovskita destaca sua relevância na conversão de energia e na mitigação das emissões de carbono. No período de 2009 a 2023, a eficiência dessas células evoluiu significativamente, passando de 3,9% para 25,7%. A capacidade adaptativa das estruturas perovskitas para a absorção do espectro solar e o deslocamento de corrente é fortemente influenciada pela energia da banda de gap, idealmente situada entre 1,3 e 1,7 eV. Embora diversas composições de perovskita possam atingir essa faixa de energia, as sínteses continuam sendo empíricas, apresentando desafios para a viabilidade experimental. Nesse contexto, a utilização de bancos de dados experimentais, fornecidos por pesquisadores globais, emerge como uma abordagem eficaz para acelerar e viabilizar a pesquisa das estruturas perovskitas destinadas a células fotovoltaicas. Este estudo empregou o banco de dados da plataforma MaterialsZone para alimentar algoritmos de aprendizado de máquina, concentrando-se nas técnicas de Máquina de Vetores de Suporte (SVM) e Floresta Aleatória (RF) para a predição de energia da banda de gap em uma composição específica de perovskita. Ao direcionar os experimentos de síntese para composições particulares, orientadas pelas predições dos modelos, é possível alcançar a energia da banda de gap desejada de maneira eficiente. Esse enfoque resulta em avanços mais rápidos na pesquisa, reduzindo os custos associados à síntese de perovskitas. O modelo RF apresentou um erro percentual médio de 5,13%, desvio padrão do erro percentual de 6,99%, e Erro Quadrático Médio (RMSE) de 0,119. Por outro lado, o SVM registrou um erro percentual médio de 4,05%, desvio padrão do erro percentual de 6,45%, e RMSE de 0,881. Os modelos desenvolvidos não apenas demonstram uma alta capacidade preditiva, mas também fundamentam o entendimento da relação entre a composição química e os valores de energia da banda de gap das perovskitas. Ao empregar algoritmos de aprendizado de máquina, este trabalho abre caminho para otimizações direcionadas, e ainda, impulsiona avanços substanciais na fabricação de células fotovoltaicas baseadas em perovskita