Progress and future prospects in groundnut improvement to feed Africa in the face of technological advancements

Abstract

Crop productivity is crucial in meeting food demands to feed the growing population in the face of endemic biotic and abiotic stresses. Technological advancement and its application to boost crop productivity would be a pathway towards ensuring food and nutrition security. Dryland legumes including groundnut are suitable in diversification of farming systems as insurance crops to ensure productivity. Crop improvement is one of the pillars towards enhancing productivity by delivering products and services based on demand articulation such as high yielding resilient varieties that are nutrient dense to address the global nutrition agenda. Recent advancements in molecular technology has made it possible to sequence the groundnut genome, develop genetic maps and identification of quantitative trait loci (QTLs) for key traits of importance. These new developments need to be exploited to accelerate the design and development of quality products that fits within the African farming systems. The low genotyping cost has opened avenues for research centers in African countries to embrace the use of genomic selection tools in breeding. This should enhance efficiency in exploiting the wild genetic resource base, broadening the narrow genetic base of groundnut and fast tracking variety release. The use of molecular tools in breeding and wide hybridization techniques coupled with high throughput phenotyping is a new dawn to breeding programs and this would contribute significantly to food security and poverty alleviation in the long run. However, the success in the modernization of breeding for efficiency will be underpinned by pro-active engagement among different actors in the national, regional and international arena to leverage resources and expertise in the omics era for sustained outcomes. Healthy working partnerships are also key to the delivery and utilization of such technologies coupled with learning and feedback for product improvement

    Similar works