research

Growth and formation of inverse GaP and InP opals

Abstract

Opals consist of an ordered array of SiO2 spheres. This leads to a modulation of the refractive index and hence photonic stop bands behaviour over the visible/IR range of the electro-magnetic spectrum. The exact position of the stop bands depends on the size of the silica spheres. However, the refractive index contrast between the SiO2 spheres and air spaces is not great enough to open up a full photonic band gap (PBG), only the pseudogap. To increase the contrast the air spaces are filled with a material of high refractive index such as InP or GaP. To further increase the contrast the SiO2 is removed leaving a III-V framework as the inverse opal structure. By use of MOCVD we have been able to infill opals with InP and GaP to such a level that has supported the inversion of the composite forming a structure of air holes within a III-V lattice. XRD and Raman confirmed the quality of the III-V infill, while the extent of the infill was studied by SEM and reflectance measurements

    Similar works