research

Acute memory phase of sevoflurane preconditioning is associated with sustained translocation of protein kinase C-alpha and epsilon, but not delta, in isolated guinea pig hearts.

Abstract

BACKGROUND AND OBJECTIVE: Anaesthetic preconditioning (APC) exerts cardioprotective effects by reducing infarct size and improving recovery of contractile function after ischaemia-reperfusion. The interval between brief exposure to volatile anaesthetic and sustained ischaemia, the acute memory phase, is dependent on intracellular signalling mediating this cardioprotection. Intramyocyte translocation of protein kinase C (PKC) is known to be a key mediator in APC. We examined the relationship between the time frame of the acute memory phase of sevoflurane preconditioning and intramyocyte translocation of PKC-alpha, delta and epsilon to the particulate fraction. METHODS: Isolated perfused guinea pig hearts were subjected to 30 min ischaemia and 120 min reperfusion. APC was elicited with one minimum alveolar concentration sevoflurane for 10 min. Washout times of 10, 30, 60 and 90 min were studied. Contractile recovery was assessed by monitoring left ventricular developed pressures. Infarct size was determined by triphenyltetrazolium chloride staining. Translocation of PKC was examined by western blot analysis. RESULTS: After ischaemia-reperfusion, left ventricular developed pressure recovered to a greater degree with APC compared with control for washout times of 10 and 30 min, but not 60 and 90 min. Similarly, infarct size was reduced for washout times of 10 and 30 min, but not 60 and 90 min. Sustained translocation of PKC-alpha and epsilon, but not delta, was associated with the time frame of the acute memory phase. CONCLUSION: The acute memory phase of sevoflurane preconditioning is limited to less than 60 min. Sustained translocation of PKC-alpha and epsilon, but not delta, correlates with this acute memory phase of sevoflurane preconditioning

    Similar works